不等式:
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z ) (其中不等号也可以为<,≤,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
基本性质:
①对称性;
②传递性;
③加法单调性,即同向不等式可加性;
④乘法单调性;
⑤同向正值不等式可乘性;
⑥正值不等式可乘方;
⑦正值不等式可开方;
⑧倒数法则。
传递性:
传递性是在逻辑学和数学中,若对所有的 a,b,c ∈X,下述语句保持有效,则集合 上的二元关系 R 是传递的:「若a 关系到 b 且 b 关系到 c, 则 a 关系到 c。」
这个应用的目的是演示不等式传递性的计算方法。使用的时候,按大小顺序,依次输入 A, B, C的值。
不等式传递性
如果 a > b and b > c; 那么 a > c
如果 a < b and b < c; 那么 a < c
如果 a > b and b = c; 那么 a > c
如果 a < b and b = c; 那么 a < c
与小伙伴分享:
◎已有0人留言